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Discrete-Time Priority Queues with Partial
Interference

MOSHE SIDI, MEMBER, IEEE

Abstract—A class of discrete-time priority queueing systems with
partial interference is considered. In these systems, N nodes share a
common channel to transmit their packets. One node uses a random
access scheme, while other nodes access the channel according to
preassigned priorities. Packet arrivals are modeled as discrete-time
batch processes, and packets are forwarded through the network ac-
cording to fixed prescribed probabilities.

Steady-state analysis of the class of systems under consideration is
provided. In particular, we present a recursive method for the deri-
vation of the joint generating function of the queue lengths distribution
at the nodes in steady state. The condition for steady state is also de-
rived. A simple example demonstrates the general analysis and pro-
vides some insights into the behavior of systems with partial interfer-
ence such as multihop packet radio systems.

I. INTRODUCTION

HE survey paper by Kobayashi and Konheim [1] dis-
cusses many models of discrete-time queueing sys-
tems. Such systems have been receiving increased atten-
tion in recent years [2]-[4] due to their usefulness in
modeling and analyzing various types of communication
systems. Packet-switched communication networks with
point-to-point links between the nodes, where data pack-
ets are of a fixed length, motivated most of these models.
The models in [2]-[4] are of a tandem nature since in
point-to-point networks the transport of a packet from its
source to its destination involves the transmission of the
packet over a succession of links. The fixed packet length
assumption induces the discrete-time nature of the models.
In this paper, we consider a class of discrete-time prior-
ity queueing systems with partial interference. Consider-
ation of these systems has been motivated primarily by
the class of packet-switched communication networks
called the multiaccess/broadcast networks, or packet ra-
dio networks. In these communication networks, all nodes
share a common channel through which they transmit their
packets and from which they extract packets destined to
them, hence the multiaccess nature of these networks. In
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addition, when a node transmits a packet through the
shared channel, all nodes that are within its transmission
range hear this transmission, thus inducing the broadcast
nature of the system.

We assume that the channel time axis is slotted into
intervals of size equal to the transmission time of a packet.
All packets are assumed to be of fixed and equal size. The
nodes are synchronized so that they may start transmis-
sion of a packet only at the beginning of a slot, hence the
discrete-time nature of the system. All nodes are assumed
to have infinite buffers.

One of the most crucial issues in multiaccess networks
is the protocol required to transmit packets on a shared
channel in a distributed environment. For a survey of
multiaccess protocols, the reader is referred to [5]. The
design and analysis of multiaccess protocols is not trivial.
This is due to the following two facts that hold for packet
radio networks: 1) If two or more nodes transmit packets
during the same slot to the same node, then the overlap
in transmission destroys all packets involved in the trans-
mission, and 2) a transmitting node is unable to receive
packets transmitted by other nodes of the system. These
two facts, together with the broadcast nature of the net-
work, give rise to statistical dependence. between the
queues at the nodes of the network. In most cases, this
dependence is rather complicated, and therefore, there is
little hope of obtaining analytical results for general mul-
tiaccess protocols and for general network configurations.
The purpose of this paper is to analyze a rather general
network configuration with a specific mode of operation.

One mode of operation that can be accomplished in
multiaccess networks is a conflict-free mode. This mode
of operation is known to be very attractive, as it com-
monly provides high channel efficiency. Conflict-free op-
eration can be achieved if every node knows perfectly
which are the nodes that have packets ready for transmis-
sion at the beginning of each slot. This is possible in sys-
tems that have a central scheduler that schedules the trans-
missions according to information it receives from the
nodes or in systems where the nodes exchange this infor-
mation among themselves. Some examples of conflict-free
protocols have been described in the literature [6]-[8].
Generally, any order of transmission can be used, in par-
ticular, fixed priority [6], [7] as well as alternating prior-
ity {71, [8] can be easily implemented. The essential as-
sumption in devising conflict-free protocols is that all
nodes of the system can hear each other. Yet, if there are
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some nodes that cannot exchange information with the
scheduler or with other nodes, on which nodes have pack-
ets ready for transmission, then their transmissions cannot
be accommodated in a conflict-free mode of operation.
Such situations are encountered when some nodes are hid-
den from other nodes in the system [9]-[10]. Commonly,
nodes are hidden from others in a multihop environment
where packets must traverse more than one hop in order
to get to their destinations (see the example in Section
IV). In such situations, the hidden nodes that are not able
to participate in the conflict-free protocol should use some
random access scheme [5].

The class of discrete-time queueing systems that we
consider in this paper consists of systems having N — 1
nodes that access the channel in a conflict-free mode ac-
cording to fixed priorities that are preassigned to them.
No two nodes have the same priority, and a given node is
allowed to use the channel in a given slot only if it has a
packet ready for transmission and all nodes with higher
priority have empty queues. In addition, there is an extra
node in the system that cannot be accommodated in the
conflict-free mode of operation and therefore is allowed
to use the channel in any slot on a random basis. If the
node uses the channel along with any other node, then
their packets are destroyed and must be retransmitted,
hence the interfering feature of the systems under consid-
eration. The assumption of a single interfering node is
quite restrictive. However, as we shall indicate later, the
analysis of systems having multiple interfering nodes is
formidable, if possible at all. The single interfering node
assumption enables us to analyze the system exactly and
derive some insight into the behavior of interfering sys-
tems. Furthermore, it would probably be possible to ap-
proximate systems with multiple interfering nodes by ag-
gregating them into a single node and then use the results
of this paper. The latter idea is still to be explored.

To enhance the network structure of the problem, we
attach to each node a given probability distribution that
indicates the probability that a packet transmitted by the
node is forwarded to one of the other nodes or to the out-
side of the system.

Outside sources feed the nodes of the system with new
packets. An important feature of this paper is that these
sources are allowed to depend on each other. Thus, we
are able to characterize a rather general class of batch ar-
rival processes.

Several discrete-time queueing systems that have been
previously investigated [11]-[13] are related to the class
of systems considered in this paper. In [11], a ‘‘loop sys-
tem,’” in which nodes transmit packets only to the outside
of the system, the arrival processes are independent, and
there is no interference, has been considered. In [4] and
[12], two-node systems have been analyzed, and in [13]
no interference is allowed.

The paper is organized as follows. In Section II, we
describe the model along with the assumptions and sev-
eral definitions and notations used throughout the paper.
In Section III, we present the steady-state analysis of the
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class of systems under consideration. In particular, we de-
velop a method for deriving the joint generating function
of the queue lengths at the nodes, and we give the ergo-
dicity condition for the system. Moments of the queue
lengths at the nodes can be derived from the generating
function, and average time delays can be obtained by -
using Little’s law [14]. In Section IV, we give an example
that demonstrates the general analysis and provides some
insight into the behavior of systems with partial interfer-
ence. Finally, in Section V, we summarize and discuss
some of the ramifications and limitations of our model and
our results.

II. MobpEL DESCRIPTION

We consider a descrete-time queueing system in which
the time axis is divided into intervals of equal size, re-

-ferred to as slots. The slots correspond to the transmission

time of a packet, and all packets are assumed to be of the
same fixed size. The system consists of N nodes, and
packets arrive randomly to the nodes from N sources that
in general may be correlated. Let 4;(¢),i =1,2, - - -,
N,t=0,1,2, , be the number of packets entering
node i from its corresponding source during the time in-
terval (¢, t + 1). The input process {A4;(£)}¥,,r =0, 1,
2, - -+, is assumed to be a sequence of independent and
identically distributed random vectors with integer-valued
elements. Let the corresponding probability distribution
and generating function of the input processes be

a(iy, b, *++ ,iy) = Pr {Al(t) =i, Ay(1)
=gy, o, AN(t) = 'N}
;=0,1,2, l<j=N
(1a)
N
F(z) = E{,I}] zf’(')} (1b)

where we use the notation z = (z;, 25, * * * , Zy ).

All nodes share a common channel for transmission of
their packets, and transmissions are started only at the be-
ginning of a slot. No more than one packet may be trans-
mitted in any given time slot by a single node. Using some
conflict-free protocol, the channel is made available to
nodesi =1, 2, » N = 1 according to a fixed priority.
Specnﬁcally, node 1(1 =< i = N — 1) transmits the packet
at the head of its queue whenever the queues at nodes 1,
2, +++,i — 1 are empty and the one at node i is non-
empty. Node N is a special node that cannot participate
in the conflict-free protocol and therefore apply a random
access protocol. At the beginning of each slot for which
the queue at node N is nonempty, a coin with probability
of success p is tossed. In the case of a success, node N
transmits the packet at the head of its queue; otherwise,
it remains silent. Whenever node N transmits while an-
othernode i(1 = i < N — 1) is also transmitting, then
both transmissions are unsuccessful and the two nodes
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must retransmit the packets at the head of their queues
according to the protocols described above.

In any case, when a node i(1 < i < N) transmits a
packet successfully, then the packet joins node j(1 =< j
=< N, j # i) with probability 6;( j) or leaves the system
with probability 6;(0). We assume here that 6;(i) = 0.
All packets received by a node from an outside source or
from other nodes are buffered in a common outgoing
queue and transmitted on a first-come-first-served basis.
It is assumed that packets indeed arrive at every node of
the system, so that there is no node that is empty with
probability 1 (in other words, nodes that are always empty
are ignored). Finally, we assume that the buffers at the
nodes are infinite. A schematic figure of a node i in the
system is depicted in Fig. 1.

1I. STEADY-STATE ANALYSIS

To describe the evolution of the queue contents at the
nodes, we need several definitions. Let L;(#), 1 < i <
N,t=0,1,2, -, be the number of packets at node i
at time ¢ and let U(L;(#)) (1 =i <= N,t=20,1, 2,
-+ + ) be a binary-valued random variable that takes value
1if L;(¢) > 0 and O otherwise. Let V be a binary-valued
random variable that takes values 1 and 0 with probabil-
itiespand p = 1 — p, respectively. Also, let D/(¢), 1 <
i=N,O=<j=<N,t=0,1,2, - -+, be abinary-valued
random variable that takes value 1 if a packet is success-
fully transmitted from node i to node j at time ¢ where j
= 0 corresponds to the case that the packet leaves the
system.

Using these definitions, it is easy to see that the system
under consideration evolves fort = 0, 1, 2, - - - as fol-
lows. Forl =i < N,

Li(t + 1) = Li(t) + A;(r) + fé Di.(1)

—

= V(1) U(Li(1) 1T [1 = U(Ln(1))]

(22)

i
m=1

where

i) = {

1=sisN-1

1 — VU(Ly(1))

14 i=N. (25)
Notice that V;(¢) is a binary-valued random variable, and
for1 =i < N — 1, it can be interpreted as the interfer-
ence indicator at time ¢, i.e., it indicates whether or not
node N interferes with the transmission of node i at time
t. Clearly, {L;(#)}_, is a vector Markov chain. Assum-
ing that this Markov chain is ergodic (we shall derive the
condition for this later), let us consider the steady-state
joint generating function of the queue lengths distribu-
tion,

N
G(z) = lim E{{[1 Z;L"("}'

t—co

(3)
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FROM NODE N 2 | TO NODE | 2 N

-Mt A 'Iaz(i) lal(l) NODE | ei(|)|e|(2)| s 8;(N)

Fig. 1. An example of a node i in the system.
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For notational convenience, let us define the following
boundary generating functions:

Go(z) = G(z) (4a)

G(2) =G|, .e....oeop 1 =i=<N (4b)

Gi(z) = Gi(2)] , _, 0<i=<N-1.
(4c)

Notice that by our definition Gy(2) = GN_I(z) is a con-
stant representing the steady-state probability that the sys-
tem will be empty. Finally, let us define the following
polynoms:

0i(z) = 6,(0) + 4 6,(m)z, 1=i=N. (5)

Theorem 1: With the above notations, the following
holds:

G(z) = F(2){Gu(2)
+ [Gy-1(2) = Gn(2)][P + pzv' On(2)]

N-1

+ 2 [G-i(2) - Gi(@)]z" Qi(2)
N .é [Gi-i(z) = Gi(z) = Gi_\(2)

+ G()][p + P Q(2)]}. (6)

The formal proof of Theorem 1 appears in Appendix A.
Let us give here an intuitive explanation for (6).The right-
hand side of (6) is a multiplication of the generating func-
tion of the joint arrival process, which by our assumptions
is independent of the state of the system, and an expres-
sion that indicates, for the various states that the system
may be in, which node is transmitting and how packets
are moved within the network. Specifically, Gy(z) cor-
responds to the case that the queues at all nodes are empty.
Gy -1(z) — Gy(z) corresponds to the situation that all
nodes except node N are empty; therefore, with probabil-
ity p a packet leaves node N and joins another node or
leaves the system according to the probabilities y( j ), 0
<j=<N.G_(z) - G(z)for1 =i = N ~ 1 corre-
sponds to the situation where node N is empty, as are
nodes 1, 2, -+ , i — 1, and node i has a packet for
transmission. Then, a packet leaves node i and joins an-
other node or leaves the system according to the prob-
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abilities 6;( j), 0 < j < N. Finally, the term G;_,(z) —
Gi(z) — Gi_y(z) + Gi(z) for 1 =i < N — 1 corre-
sponds to the case where nodes 1, 2, - -- , i — 1 are
empty and nodes i and N have both packets for transmis-
sion. In this case, with probability p the two nodes inter-
fere and no packet is moved, while if node N remains
silent (this happens with probability p = 1 — p), then a
packet leaves node i and joins another node or leaves the
system as before.
Rearranging (6) we obtain

1

2 Hi(z) Gi(z) + ,Z-;‘ Hi(2) Gi(2)
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Proof: Let |z;| = land |z;| < 1,2 =i < N. We
distinguish between two cases. The first is the case where
packets do arrive to some node [, 2 < [ < N, from its
corresponding source. The second is the case where no
packets arrive to nodes 2 < | < N from their correspond-
ing sources. Our assumption that packets do arrive to all
nodes implies that in the latter case packets do arrive at
node 1 from its corresponding source, and it routes some
of them to at least one of the nodes [, 2 < [ < N.

Case 1: There exists some node [(2 < [ < N) for
which the probability that a packet will arrive to it from
its corresponding source is strictly positive, i.e., there ex-
ists a(iy, i, * * * , iy) > O for some i; and some i, > 0

G(z) = F(2) = 1 — F(z)[p + f’zl_lQl(Z)] (7a) (2 = | = N). Therefore,
where
Plzit1Qi+1(2) — 27" Qi(2)] l=i=sN-2
Hi(z) =41 -2 +pzy'Ov(z) — eyl 1Qv-1(z) i=N~—1 (7b)
p[1 — z'On(z)] i=N
and
-p[1 - z7'Qi(2)] i=0
A(z) = ¢ p[zid1Qiai(2) — 7' Qi(2)] 1<isN-2 (7¢)
p[1 =zt Ov-1(2)] i=N-1

In (7), we encounter a common phenomenon in interfer-
ing queues, namely, that the generating function G(z) is
expressed in terms of several boundary functions. In order
to uniquely determine G(z) in (7), we will have to deter-
mine 2N — 1 boundary functions,' Gi(z), 1 < i < N,
and Gi(z), 0 < i = N — 2. In what follows, we develop
the method for obtaining these boundary functions. The
basic idea is to first express G,-(z), i=0,1, - ,N —
2 (in this order) in terms of @(z), i+1=<=j=<sN-1.
Then G;(z),i= 1,2, - ,N — 1, is expressed in terms
of Gi(2),0 <j<N-1,and G(z),i +1 <j=<N.
Finally, the constant Gy(z) is determined from the nor-
malization condition, and using backward substitutions all
the boundary functions are determined. Along the above
process, we mainly use the analytic properties of the gen-
erating function G(z) in the polydisc |z;| = 1,1 =i =<
N.

In order to proceed, we shall need the following lemma.

Lemma 1: Let F(z) be the generating function of the
joint arrival process (1b), Q,(z) be the function defined
in(5)and 0 < p < 1. Then, for given |z;| < 1,2 =< i
< N, the following equation in z,,

F(z)[pz + (1 = p) Q(2)] = 2, (8)

has a unique solution z; = z;(2z, z3, * * * , Zy ) in the unit

circle |z;,| < 1.

'Notice that in a general system where each node can interfere with any
other node, we might have up to 2 ¥ — 1 boundary functions to determine.
An example for such a system is a network in which all nodes use a random
access policy.

|F(z)[pzi + (1 = p) Qi(2)]| = |F(2)]

oo oo [+ N )

= ZZ“'Za(i,,iz,"‘,iN)Hz;]
H1=0i=0 iNn=0 j=1
x© o] o0

< D D ... Za(il,iz,"',iN)‘Z;’
it=0i2=0 iN=0
[+ [+ o

< Z Z ¢t Z a(il, iz, * c ., lN) = 1 = |Z1|'
i1=0 i2=0 iNn=0

(9)
Hence, applying Rouche’s theorem [15], the claim is
proved in this case.
Case 2: Packets arrive at node 1, and it routes some of
them to at least one of the nodes /(2 = [ = N), i.e.,
there exists 6,(/) > O for some 2 < !/ < N. Therefore,

|F(2)[pzr + (1 = p) @(@)]] = |p + (1 = p) Q\(2)]

<p

- ’,, + (1 —p)[fh(o) + ‘N’% "'(")z‘}

+(1—=p)=1=]z]. (10)

Hence, applying Rouche’s theorem, the proof is com-
pleted. O

Let 0\(z,, 23, * * * , zy) (for simplicity o,) denote the
unique solution of (8). Let z'"’ denote the vector z with
its first component z, replaced by o,. Using a proof sim-
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ilar to that for Lemma 1, we can show that for |z; | < 1,
3 = i = N, the following equation in z,,

F(z)[pz + (1 = p) Q(z)] =2, (11)

has a unique solution in the unit circle |z, | < 1. Let 05(z3,
2, * * * , zy) denote this solution and z*’ denote the vec-
tor z with its first component z; replaced by o,(0,(z3, 24,
* ,2Zny), 23, """ , Zy) and its second component z,
replaced by 65(z3, 24, * * * , zZy ). Continuing this proce-
dure, we have the following lemma that recursively de-
termines the unique functions 6;(2Z; 41, Zi42, *° * 5, Zn) 2
< i < N — 1 as follows.
Lemma 2: With the above notations and for2 < i <
N — 1, the following equation in z;,

F(Z"M[pz + (1 - p) Q" ")] =2z (12)

has a unique solution in the unit circle |z; | < 1 for |z |
<1,i+ 1 =<j =< N. Here 2%~ denotes the vector z
with the variables z; replaced by o; for 1 = j < i — 1.
This unique solution is denoted by 6,(zZ; 41, Zi+2, * * *
Zy ). The proof of this lemma is similar to the proof of
Lemma 1.

If weletp = 0 and zy = O in Lemmas 1 and 2 and we
use the recursions defined by (8) and (12) for this case,
then the unique functions 6;(2Z; 41, Zi+2, ** > 2v—1), |
< i < N — 2, are defined, i.e., 6, is the unique solution
in the unit circle |z;| < 1 of the equation F(£) Q,(2) =
zywhere £ = (21,2, * * * , 2y-1, 0) given that |z; | < 1,
2<isN-1.6,2=<i=<N—2,isthe unique solution
in the unit circle |z;| < 1 of the equation F(£/~ 1)
Q8™ = 7z, where £/7" is the vector £ with 7, = &,
=108y, ", 2% =0,_giventhat || < 1,i + 1 =<
Jj = N — 2. We are now armed enough to attack the prob-
lem of determining the 2N — 1 boundary functions.

A. Determination of the Boundary Functions Gi (z), 0

<=i<N-2
Letting zy — 0 in (6), we obtain

Go(z) = F(f){c‘;N_l<z) + pON(2) Gy\(2)

+ iz:_‘:l [Gi_l(z) - GA.‘(Z)]Zi_IQi(z)} (133)

where 2 = (2;, 25, * * * , Zy-1, 0) and

dGy_(z)

Gy-i(z) = dzn

(13b)

w=0

Notice that Gy_,(z) is a constant. Rearranging (13a) and

noticing that by definition Gy_,(z) = Gy(z), we obtain
N-2

E(Z) + i§l Di(2) Gi(z)

6la) = FlO) ——pb o (1)

where
E(£) = [1 = 25110y 1(2)] Gy-1(z) + pON(2) Gii(2)
(14b)
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D,(2) = z71Qi1(2) — z ' Qi(2). (14c)
Notice that in (14) the boundary function Go(z) is ex-
pressed in terms of the boundary functions G(z),1 =i
< N — 1 and the constant Gy_(z). Now, using the an-
alytic property of Gy(z), we immediately obtain the fol-
lowing result.

Theorem 2: Let &; and #" be as defined before.
Then,

N-2

E(#V) + 2 D(V) 6(2)

G Y

This is true since Go(z) is an analytic function in the
polydisk |z;| < 1, 1 < i < N — 1. Then, in this poly-
disk, whenever the denominator of Go(z) vanishes, the
numerator must also vanish. Since the denominator of
Go(z) vanishes at 6;, we have from (14) that

Gi(z) = F(2")

N-2

E(ZV) + 2 [2:10i(27) = 7' 2i(2")] Gi(z)
= [671Qi(£V) - 21 0x(£1)] Gi(z) (16)

which, together with the fact that F(£") o7 0,(£") =
1, implies (15).

Now, exploiting the similarity between (14) and (15)
and repeating the above procedure fori =2,3, --- | N
— 2, we obtain the following result.

Theorem 3: Let 6; and 1D 2 <i<N- 2, be as
defined before. Then, for < i <= N — 2,

N-2

E(£") + .=§| D;(27) Gy(z)

Gi(z = F(£© DY - S 17
) (&) 1 _F(f( ))Zi+l1Qi+1(z( )) (17
The proof of (17) is similar to that of (15).

Now, using (17) fori = N — 2, we have
" i, E(#V )
Gy_x(2) = F(£V~? 5 ~

N 2( ( ) 1 — F(z(N 2))ZN1—1QN—](ZA(N 2))

(18)
and since Gy_,(z) is an analytic function for |zy_,| <
1, we obtain from (18) and (14b) that
N LY N it
PGh- () = Gyyfz) DBalE D = 1 (g

On(2™ )

Substituting (19) in (1§), we get GN—z(z) expressed in
terms of the constant Gy_,(z). Using (17) fori = N —
3,N—4, -- ‘s 2, and then (15) and (14), we obtain all
the functions G,-(g.), 0 <i=< N -2, expressed in terms
of the constant Gy_,(z) = Gy(z). Specifically, as we
shall need it later, let us define the function k(2) as fol-
lows:

k() = Go(z)/Gn(z). (20)
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B. Determination of the Boundary Functions G;(z), 1
<isN-2

To obtain the boundary functions G;(z), 1 =i = N —
2, we use a procedure similar to that for G;(z),0 = i =
N — 2. Let us first rewrite (7a) as follows:

N
H(z) + % Hi(2) Gi(z)
G(z) =F - 2la
) () 1 — F(z)[p + Pz  Qi(2)] )

where H;(z), 1 < i < N, are defined in (7b) and H(z) is
a known function up to the constant Gy(z). H(2) is given
by

1

H@) = 3 () Gl).

0

(21b)

H;(z) are defined in (7c).

Using Lemmas 1 and 2, we immediately obtain the fol-
lowing result.

Theorem 4: Letg;, 20,1 < i < N — 1, be as defined
in Lemmas 1 and 2. Then, for 1 < i < N — 2, we have

H(Z?) + 2 H(z") G(2)

— F(z9)[p + Pz @iai(z®)]
(22a)

Gi(z) = F(Z(i)) 1

and

H(ZVY) + Hy(z" ") Gy(2)
HN—I(Z(N~1))

Gy-1(z) = —

(22b)

We will demonstrate how (22a) is proved for i = 1.
Then, by induction, one can easily obtain (22a) and (22b).
Since G(z) is an analytic function for [z; | < 1,1 =i =
N, and since the denominator of G(z) vanishes at 0y, we
have from (21a) that

H(ZD) + gz H(ZV) Gi(z) + Hi(z) Gy(z) = 0.

(23)

Using the definition of H(z'?) from (7b), i.e., H(z")
= Bl Q@) — o7 Q(z"), and the fact that
Fz ) [p + por'Qi(Z”)] = 1, we get immediately
(22a) fori = 1.

Now, in (22b) Gy_,(z) is expressed in terms of the
constant Gy(z). Using (22a) for i = N — 2, N — 3,
-+ +, 1 we finally have all the boundary functions G;(2),
1 < i< N — 1, expressed in terms of the constant Gy (2).

Now that we have already determined G;(z), 0 < i =<
N —2,and G;(z),1 =i < N — 1, interms of the con-
stant Gy(z), the problem is reduced to that of determining
this constant.

C. Determination of the Constant Gy (z)

To determine the constant Gy(z), let us first prove the
following.
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Theorem 5: For1 =1 < N, let

_0F(z)

r =
9z n=p=--=w=1

(24a)
and
N
N=r+ Zl N6 (). (24b)
=
Then the following holds:

No=DPlGi(1) - G(I)] + plG._,(1) — G(1)]

1<isN-1 (25a)
M = p[Gy-1(1) = Gu(1)] (25b)
where
G(I)=G(2)|,, cprrercgey 0 SiIs=N-—1
(26a)
G(1) = Gi(z)'2i+l=2i+2="'=ZN~1=1 0<isN-2
(26b)

and Gy(1) = Gy-1(1) is just the constant we are looking
for.

The proof of Theorem 5 appears in Appendix B. From
(25), we obtain

ié N = B[1 = Gy-y(D)] + p[Go(1) = Gy-1(1)]
=p[1 = M/p — Gu(D)] + p[Go(1) — Gu(D)]
(27)

Therefore,
N-1

Gu(1) — pG(1) = p[1 = W/p] = 2 N (28)
Recalling that Go(z) = k(Z) Gn(z), we finally have that

N-1
Pl = M/p) = Z N
1 — pk(1)

where k(1) = k(¢)|=z=--- =2, -1- Equation (31) im-
plies that the condition for steady state is
N-1

Gy(1) = (29)

I N <1 = M/p). (30)
Rewriting (30) as
N-1
Ay < P<1 - .§1 )\i/ﬁ> (31)

we can explain the steady-state condition intuitively as
follows. Clearly, node N is the bottleneck of the system.
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If it is heavily loaded, then the fraction of time that the
channel is used by the other N — 1 nodes is Z¥-}' \, /P,
so the fraction of time that the channel is available for
node N for successful transmissions is 1 — LV ),/
D. As node N transmits with probability p when non-
empty, the rate of its successful transmissions is p(1 —
R /D), which for stability must be greater than the
total arrival rate to the node. Consequently, (31) should
hold.

Having obtained the joint generating function G(z) we
can derive, at least in principle, any moment of the queue
lengths at the nodes. Specifically, if we denote by L, the
average queue length at node i in steady state, then

aG(z)

L. =
i 62,’

(32)

a=n="-=n=1

Assuming that packets arrive at the nodes only at the end
of a slot and then using Little’s law [14], we may also
obtain the average time delays at node i, denote by T}, as
follows:

T, = Li/)\i (33)

where \; is the total arrival rate at node i as defined in
(24b). The total average time delay in the system is ob-
tained by applying Little’s law to the whole system, and
it is given by

M=

r; (34)

"

N
T= ZL,./
i=1

i=1

where r; is the arrival rate at node i from its corresponding
source as defined in (24a). The total average delay T is
clearly a function of the transmission probability p. Ob-
viously, as p decreases, the total average delay increases
since node N transmits rather rarely. Also, when p in-
creases, the total average delay also increases since there
are many conflicts in the transmissions. Consequently,
there is some intermediate value of p (that depends on the
arrival processes to the nodes) that minimizes the total
average delay in the system. This will be demonstrated in
the example given in Section IV.

1V. ExXAMPLE

In this section, we will use a simple example in order
to show some details of the general solution method de-
veloped 1n the previous section. The example consists of
a multihop network, depicted in Fig. 2, where packets
arrive to nodes 1, 2, and 3, and node 2 forwards its pack-
ets to node 1. Consequently Q,(z) = Q3(z) = 1; 0s(2)
=z, (here z = (z,, 23, z3)). We shall also assume that

F(Z)=r|Z|+"ZzZ3+l—rl—r

i.e., during each slot a packet arrives to node 1 with prob-
ability r, with probability r a packet arrives to both nodes
2 and 3, and with probability 1 — r, — r no packet arrives
to the system. Then using (8), (12) forz; = 0, p = 0, we
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NODE 3
SOURCE
{RATE r)
NODE 2 NODE |
SOURCE | (RATE ")
Fig. 2. Example network.
obtain
A 1 r
gy = -
1 - r 1

2
5= (1 - T
% < 1 - r1> ’
Using (19), (18), and (14), we have
r
pGi(0, 0, 0) = P G(0, 0, 0)
G(0, z,, 0) = G(0, 0, 0)
G(z, 2, 0) = G(0, 0, 0) [l +

r ]
1 — ry — rZI )
Using (29), we have that
p(l —r/p) — (r, + 2r)
L=p(1-r)/(0 = r ~r)
and the condition for steady state is
p(1 —r/p) — (r, +2r) > 0.
From (8) and (11), we obtain
0z, z3) = (1 = f(z2, 23) — P — ‘/K)/zrll’

where

G(0, 0, 0) =

Az ) =plraazs + 1 —ry — )

A=(1=fz2) ~ nB) - 4rf (22 23)

and 05(z3) is the solution of a,(z3) = a%( 0,(23), 23) in
the unit circle |0, | < 1.
From (15) and (17), we obtain

G(0, 0, z3) = G(0, 0, 0)

np

—1
_l + —
p(z ) 1—r —r

(1 — oy(0a(23), Z3))

1 =2p + pz3' — po;'(0x(2;), z3)

and
G(0, z3, z3) = {G(O, 0, 0) [p(l -z

np
l—r—r

+

(1~ oz )|
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+ G(0,0z3)(1 — 2p + pz;"

~ Pz '01(z2, a))}/{ﬁ(ol"(zb z3)
— 20122 23)

Finally, we have that

mthQ=FMJmM{ﬂQQOﬂM1*5W

np
+____.__— —
(1 - 2] + 60,02

(1 =2p+pz3' — Pz 'a)

+ G(0, 25, 73) P22z — zf‘)}/[l

- F(z1, 22, ) (p + Pz )]

The explicit expressions for the average delays in this
system are too complicated to be given here. To give some
insight into the behavior of this network, we plotted these
quantities in Figs. 3-5. In Fig. 3, T}, T,, T3, and T are
plotted as a function of r = r; for p = 0.4. In Fig. 4,
these quantities are plotted as a function of p for r; = r
= 0.05. As we can see, for small values of p, the queue
is built up only at node 3 (since it is rarely transmitting),
while for large values of p, queues are built up at all the
nodes, and this is due to the interference.

As we see, there is an optimal transmission probability
p* that minimizes the total delay in the system. In Fig. 5,
T..in (the minimal total delay in the system) is plotted as
a function of r = r,. It is interesting to mention that p*
= 0.34, and it is almost insensitive to the value of r =
ry. Also T, is not very sensitive to small variations in
p*. As a final remark, we notice that when r = r; = 0,
the total average delay is given by 0.5 + 1/p + 1/2p,
which is minimized when p* = 0.387 and gets the value
3.423.

V. SUMMARY AND DISCUSSION

In this paper, we studied a class of discrete-time prior-
ity queueing systems with partial interference. In these
systems, N nodes share a common channel to transmit their
packets. One node uses a random access scheme, while
other nodes access the channel according to preassigned
priorities. Packet arrivals are modeled as discrete-time
batch processes, and packets are forwarded through the
network according to fixed prescribed probabilities.

The motivation for considering these systems is two-
fold. First, their nontrivial analysis, along with the solu-
tion methodology that we develop for such systems, is of
interest. Second, several conflict-free protocols for ac-
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Fig. 5. Minimal total average delay versus arrival rate.

cessing a common radio channel that have been suggested
[6}-[8] can, with our model, be analyzed even in the pres-
ence of an interfering node. The restriction to a single
interfering node is obviously due to the overwhelming
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complexity in analyzing systems with multiple interfering
nodes. Our method cannot be extended to deal with the
case of more than a single interfering node, nor are we
aware of any other existing method to analyze exactly
systems with multiple interfering nodes. Evidently, the
burden in developing any such method is that too many
boundary functions need to be determined. The applica-
bility of our results for a single interfering node in devel-
oping approximate solutions for systems with multiple in-
terfering nodes, by aggregation for instance, is still to be
explored.

In the paper, we provide steady-state analysis of the
class of systems under consideration. In particular, we
present a recursive method for the derivation of the joint
generating function of the queue length distribution at the
nodes in steady state. The condition for steady state is
also derived.

APPENDIX A

Proof of Theorem 1: Consider the evolution equation
(2) and let G,(z) = E{TT™_, z4} . Then,
. ;

G,1y(z) = E{I}l z%""“’} = F(z)

m{t) = Vi) Ui(Li(+))TIT

N
. E{H z’(,,-(x)+}:ﬁ=, i—ll“—U"'(L"'('))]}
i=1 "=

(AD)

where in (A1) we used (1) and the fact that the vector of
arrival processes {A4;(¢)}Y, is independent of the state
of the system.

Now, for 0 < j < N, let the event that L;(t) =0 for
1l =i =<jand L, (t) > 0 be denoted by ©;(¢). Then,
from (A1) we obtain

G.ela) = F(@) [ Pr (04(0)
+ Pr (- (1), ¥ =0)
CE[Z@/Qu_i(2), V = 0]
+ Pr(Qy_ (1), V = 1)z

; E[zk"(')/QN—l(t)’ V= 1]0x(2)
N-2

+ 2 Pr(9(0), Lu(r) = 0) 5"
N-1
. ELI;IJ 27O (1), Ly(t) = Ojl Qi(z)

N-2

+ jz_,‘o Pr (Q(e), Ly(1) > 0, ¥ = 0) 5!

N
E[ ,,,I=I,- 2 /Q(2), Ly(t) > 0, V=0]
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N-2

© Qi(z) + .ZE) Pr (Q;(2), Ly(z) > 0, V = 1)

N
. E[q 2D /Q(2), Ly(t) > 0, V = 1]}

(A2)

where in (A2), zp = 1 and we used the definitions of
Qi(z), 1 < j = N. Now, since Vis an independent ran-
dom variable, we obtain from (A2)

G.ui(2) = F(2) [ e (04(0)
+ Pr (Quv_1(0)) E[zR /Qn_(1)]

. _[1‘7 + pzy' On(z)]

+ §, Pr (9(), Ly(r) = 0)

N-1
. E[,Ej Zﬁnm/gj(,), Ly(t) = O]Zj_IQj(Z)
N-2

+ §) Pr (Q(1), Ly(r) > 0)
: ELIL 2D /Q(1), Ly(t) > OJ

e+ 750},

Now, it is easy to see from (3) and (4) that for z = oo we
have

G+ 1(z) = G(z)
Pr (QN(I)) = Gn(2)
Pr (QN—I(t)) E[ZII:IN(‘)/QN—I] = Gy_y(2) - Gn(z)

N-1

Pr (9,00, Ln(t) = 0) £ IT 2 /0,(1), 10(1)

(A3)

-0]= 60 - 6.
N
Pr (9;(2), Ly(1) > 0) E[ II 25 /Q(1), Ly(r)
m=j
> 0|~ 60 - Gu(2) - 42) + Guu(a).
Therefore, (6) follows and Theorem 1 is proved 4

APPENDIX B

Proof of Theorem 5: For 1 < i < N, let us derive
both sides of (6) with respect to z; and substitute z, = z,
=+ =2zy=1.Then, forl =i < N — 1, we obtain
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0 =r; + [Gy_1(1) = Gy(1)] pbn(i)

+ 3 160 - 60150

— [Gii(1) = Gi(1)]

+ 3 [G(D) ~ G(I) ~ GyD)

+ G, (0)

- plGi-i(1) = G(1) ~ G;_\(1) + G(1)]

and

0=ry— P[GN«l(I) - GN(I)]

+ 2 [6-(1) — G(D)] 6(N)

+ 3 [Gi(D) - G(1) ~ Giy(1)
+ G(D)]A(N) (52)

where in (B1) and (B2) we used the fact that G(I1) =
Go(1) = 1. Rearranging (B1) and (B2), we get for 1 < i
<N-1:

0 =r;, + [Gy_(1) — Gy(1)] pOn(i)
+ 3 P16 - 6] + 6
- G(D)]} 6,(i)

- {f’[Gi—l(I) — G(I)] + p[G;1(1) - Gi(I)]}

(B3)
and
0=ry— P[GN—I(I) - GN(I)]
+ izil {BlGi-1(1) - Gi(D)]
+p[Gio(1) - G(D)]} 6.(N).  (B4)

In (B3) and (B4), we have N linear eqyations withAN un-
knowns p[G;_ (1) — G:(I)] + plG;_(1) — G;(1)]
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forl =i < N-—1and p[Gy_,(I) — Gy(I)]. Appar-
ently, (25) solves these equations. O
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