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Growing Binarj Trees in a Random Environment

Jlan Kessler and Moshe Sidi, Senior Member, IEEE

Abstract—A class of binary trees that grow in a random environment,
where the state of the environment can change at every vertex of the
trees is studied. The trees considered are single-type and two-type binary
trees that grow in a two-state Markovian environment. For each kind of
tree, the conditions on the environment process for extinction of the tree
are determined, and the problem of caiculating the expected number of
vertices of the tree is addressed. Different ways of growing the trees are
compared. i

Index Terms— Random trees, growing trees, random environment,
splitting algorithms.

I. INTRODUCTION

Consider a growing tree of which each vertex generates additional
vertices according to some probabilistic reproduction law. Growing
trees arise naturally in many applications, such as searching and
sorting [8], multiaccess comunication [2], and growth of populations
[3], [4]. Often, the tree that arises is growing in presence of a
stochastic process, the random environment, which determines the
reproduction law of each vertex. In addition, the tree may consist of
vertices of different types, and the reproduction law of each vertex .
may depend on the type of the vertex. ’

We study a class of binary trees that grow in a random environment,
which arise in multiaccess communication when the communication
channel is noisy [6], [9], [12]. In this case, the growing tree describes
a splitting algorithm and the random environment corresponds to the
noise process. The iniportance of the trees considered lies in the fact
that they determine the stability of the algorithms.

Most previous studies of randomly growing trees do not assume the
existence of a random environment, and are based on the assumption
that the vertices reproduce indepenidently of each other. Growing trees
in a random environment were considered so far only in the context of
branching processes in a random environment [4], with the restriction
that the state of the environment can change only at every generation,
so that vertices that belong to the same generation (and are of the
same type) have always the same reproduction law [1].

The binary trees considered here are growing in a random environ-
ment where the state of the environment can change at every vertex.
Thus, the reproduction law is chosen separately for each vertex of the
tree, and vertices that belong to the same generation need not have
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the same reproduction law (even if they are of the same type). In the
special case where the environment process consists of independent
and identically distributed random variables, the vertices reproduce
independently of each other, and the growing tree corresponds to a
multitype binary Galton—Watson process.

In the multiaccess communication system just discussed as well as
in other applications, the performance of the systém depends on the
statistical behavior of the number of vertices in the trees that describe
the system. In this correspondence, we are interested in the conditions
on the environment process so that the trees do not grow indefinitely,
and in the computation of the expected number of vertices of the
trees. As will be evident shortly, the fact that the raridom environment
changes'at every vertex, implies that different ways of growing the
trees may lead to different results. Thus, we are interested as well in
comparing different ways of growing the trees.

II. PROBLEM FORMULATION

Consider a tree that grows at the discrete times ¢t = 0,1,2,---
The tree consists of vertices of two types, 0 and 1. Initially, the tree
consists of a single vertex of a given type. At each ¢t > 0 one vertex
of the existing tree is selected (according to a predetermined order
among the vertices), and this vertex gives rise to-new vertices (the
‘offsprings of this vertex) according to some reproduction law. The

reproduction law of a vertex depends on its type and is governed by

a discrete-time homogeneous Markov chain X = {X.,¢ > 0} called
the environment. The state space of the environment X consists of
two states denoted-by g and b. Suppose that the selected vertex at ¢
isof type i (1 = 0,1). If X, = g then with probability 1 the selected
vertex does not reproduce at all. If X, = b then with probability p;
the selected vertex gives rise to twb offsprings, and with probability
1 — p: the vertex does not reproduce at all. A vertex that has been
selected at any time ¢ > 0 is never selected again. If at some instant
0 € 7" < oo there exists only one vertex that has not already been
selected and this vertex does not reproduce at T", then the tree stops

growing; if there is no such 7” then we put T' = oco. We refer to

T =T’ +1 as the length of the tree. The event {T < oo} is cailed
the extinction of the tree. ,

Since a vertex can be selected only orce, it follows that each vertex
has either no offsprings or two offsprings. A vertex that has offsprings
is referred to as their parent. Two offsprings of the same parent are
called siblings; one of them is referred to as the left offspring and
the other as the right offspring. The growing tree is considered as a
rooted tree; the initial vertex is the root of the tree, and each vertex
is the root of a subtree that includes the offsprings of that vertex (if
a vertex has not repraduced, then the subtree rooted at that vertex
consists of only one vertéx). Thus, the growing tree is a complete
binary tree. A subtree rooted at a left (right) offspring is referred to
as the left (right) subtree of the corresponding parent.

The type of each offspring is determined as follows. A parent
of type 0 has only type 0 offsprings. A parent of type 1 has one
offspring of type 1 and one offspring of type 0; the type 1 offspring
is the right offsprmg with probability ¢ and it is the left offspring with
_ probability 1 — g. Thus, if the root of the binary tree is of type O,
then the evolving tree is a single-type tree with only type 0 vertices.
If the root is of type 1, then.the evolving tree is a two-type tree with
vertices of Both types. In this case, every subtree rooted at a type 0
vertex is a single-type tree (with only type O vertices).

We now present two different orders for selecting the vertices. The
first is referred to as depth first order (DFO) and is defined by the
following rules. 1) A parent always precedes its offsprings. 2) The
vertices of a right subtree always precede the sibling of the root of
this subtree (which is a left offspring). The DFO is used in existing
splitting algorithms [2]. The second order is referred to as breadth

(b) :
Fig. 1. Examples of binary trees growing in the environment X(w) =
{bbbgggg - --}. Shaded vertex: Type 1. Unshaded vertex: Type 0. Number

inside each vertex is the time at which the vertex is selected. (a) Under the
DFO. (b) Under the BFO.

first order (BFO) and is defined by the following rules. 1) A right
offspring always precedes its sibling (which is a left offspring). 2)
An older vertex always precedes a younger one; that is, a vertex that
was born at time ¢' > 0 precedes any vertex that was born at any
time ¢ > ¢'. Note that both the DFO and the BFO are independent
of the type of the vertices. Examples of growing trees are shown in
Fig. 1. In both examples, po = p; = 1. ) ‘

The following notation and assumptions are used in the sequel
(similarly to [6]). The state space of the environment X is X =
{g,b}, and the transition matrix of X is

K:{’"g 1‘”] | )

ry, 1l—7p

(where the upper row and the left column correspond to state g).
The elements of this matrix are denoted by K(z,z'), z,z' € X.
We assume rg,75 € (0,1), so X i§ irreducible. The invariant
probabilities of X are v(b) = 7,/(1 — 7, + ) and v(g) = 1 —v(b).
We assume 0 < ¢ < 1 and p; > 0 (¢ =0,1). Forz € & we
denote P:(-) = P(-| Xo = z) and E.(-) = E(:| Xo = z). Due to
space limitations, all proofs are omitted and the interested reader is
referred to [7].

If Xo = g then the tree is degenerate with only one vertex ie.
P,(T=1) = 1. Thus, we are interested only in the case where
Xo=1b

III. THE SINGLE-TYPE TREE

In this section, we consider a single-type tree with only .type 0
vertices. We first determine the condition on the environment X for
almost sure extinction of the tree.

Theorem 1: Assume that the type of the root is 0. Then T is
independent of the order by which the vertices are selected, and we
have: B {T < oo} = 1, if and only if por(b) < 1/2.
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For a single-type tree denote w.(z') =
z,2' € X. Clearly, w,(g) = 1. The value of wy(z), z € X, is given
in [6] for pov(b) < 1/2. Since the length T of a single-type tree
is independent of the order by which the vertices are selected, we
can assume for the calculation of E},(T) an arbitrary order. In [6],
the calculation of E3(T) is carried out for the DFO. As this result is
used in the sequel, for the sake of completeness we state it here.

Theorem 2: Assume that the type of the root is 0. Then,

Ey(T) = {1 + —°—[1/2 v i pov(b) <1/2,

- oo, if powv(b) >1/2,
where 7 = {—2po(1—r)(1 =7, +1)}/{1 + B/2 - po[l -
Ty + (1—1‘b) ] VB* ~4oy/2} > O for 7y # 7 and
n = 2 for vy = 1, and o = po(l—1)(rs —7¢), 8 =

pol(1=m)(1—2ry +7g) +ms(l—7g)] = 1, and v =
(1 =7 +rg)- )

Consider now the more general case in which there are initially
1 < n < oo separate vertices of type 0. The vertices are selected and
reproduce according to the rules defined in Section 1I,’thus producing
n growing binary trees referred to as a forest. '

We now calculate E(T") of a forest with n initial vertices. Since
T is independent of the order by which. the vertices are selected,
we can assume for this calculation an arbitrary order. Thus, we
number the n initial vertices from 0 to n — 1, dnd we assume
-the following. For every 0 < ¢ < n — 1, the tree rooted at the
initial vertex i is grown under the DFO, and the vertices of this
tree precede all the initial vertices with number ] > 4. Let T; be
the length of the tree rooted at the initial vertex ¢ (0 <1 < n - 1).
Clearly, E.(T) = Z74 E.(T}). Since Ey(T) > Eu(To) and
E,T) > E,(Th) = E;E,(TM | X1) = 79 + (1 =715)Ey(To), it
follows by Theorem 1 that if pov(d) > 1/2 then E.(T) = oo.
. Consider now the case pov(b) < 1/2. Let the expected length E.(T')
of a forest with n roots be denoted by L (n). Let7:(0 <i < n —1)

be the time at which the initial vertex i is sélected. Then, for any -

0<i<n-—1, weobtain E;(T;) =
Therefore,

Lg(n) = Lg 1)+Z

" where, by Theorem 2, L§(1) = 1lifz = g and L(1) =
2po/[n(1/2—pou(b))] if z = b. For Po.(X,, = 2'), z,2' €
X, 1 <1< n—1, we obtain the following recursive expressions:

EZ'EA;\’PT(X'F = ;I,‘/)_EI/(TO).

o (Xry = 9) + Po(Xr, =0)I5L)], @)

PX, =)= ) wa(a")K(" ") 3
I“EX
P(X,, =2)) = Po(Xri_y = 2" Ywun (2" K (@, 2),
. I”,I’”G;( )
2<i<n~1 )|

Equations (2)—(4) yield Lg(n) for any » < oo and z € X. Th1s is
used in the sequel.

IV. THE Two-TYPE TREE

In this section, we consider a two-type tree that consists of vertices
of both type 0 and type 1. Note that in the special case po = p1,
the two-type tree is in fact a single-type tree. We first determine the
condition on the environment X for almost sure extinction of the tree.

Theorem 3: Assume that the type of the root is 1, and that the
vertices are selected by an arbitrary order (independent of the type of
the vertices). Then P, {7 < co} = 1, if and only if por(b) < 1/2.

P.(Xr-1 =2') for all

poTy -
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The expected length E;(T") of the two-type tree in the case where
the vertices are selected by the DFO is calculated in [6]. We now
calculate E(T) in the case where the vertices are selected by the
BFO. It is not difficult to show that if pov(b) > 1/2 then Ey(T) =
(see [7]). Thus we consider only the case pov(b) < 1/2. Atanyt > O
there exists at most one vertex of type 1 that has not been selected at
any t' < t. Let o be the time at which such a vertex is selected and
does not reproduce (possibly o = co). Let V; (¢ > 0) be the number
of type 0 vertices existing at tlme ¢ that have not been selected at any
t' < t. Let S; = inf{t > t: the type 1 vertex is selected at t'}.

Define .
‘ [ Si—t+1, if t<yo,
D‘f{o, if t>o0,

(note that since pov(b) < 1/2 then ¢ < o0 a.s.). Denote L¥(n, d) =
E(T| Xo = z, No = n, Do = d). With this notation, the expected
length E,(T) of the two-type tree is L*(0,1). We use the following
matrix notation:

_|Te 1-—7g |0 0
) el ]

st =[50

- | L§(n) _ i1
For brevity, in the sequel we write L(n) instead of L(n,1).
Denote G; = G+ (1 —p;)B and B; = p;B,i = 0, 1. Let the set

{1,2,---, s} be denoted by N,. For A C N,, denote by H,(A) the
product H1Hy -+ H, where Hr = Go for k'€ A and Hy = B()

“otherwise. Let {,j be nonnegative integers. Define (GoBo)

ZAgNi+j-|Al— ,+J(A) if ¢ +] > 0 and (GOBO)
Theorem 4: The expected lengths L(n),n > 0, satisfy the follow-

ing infinite System of equations:

2(n41)
> Az + ¢,

1=0

Z(n) = By n>0,

where Azk = (1 -q)(GoBo)" " FFfor0 <k <n+ 1,Ag’;)+1 =
(GOBO)" “Ffor 0 < k < mand C™ = GiLo(n) +
1+91(ﬂ+1 q)

The following is useful for computations.
Corollary 1: For n > 0,

A(n) (l - q)Gn+la A(n) = QGE,
A(?’;)_*_l = ¢Bg, A2?3,+1) =(1= q)Bn+1.

For 2 < 1 < 2n, the following recursive relation holds: AE") =
Godlm™D § BoA(3).

From Theorem 4, it follows that L(n) = 1 + r,L{(n) +
(1 —rg)Lb(n) for all n > 0, which could be obtained directly as
well. :

To obtain L(0) (and thus L*(0)), we need to find the particular
solution { L(n), n > 0} of the infinite system (5). In general, an exact
expression for this solution is difficult to obtain. In the special case
where po = 0, the system can be solved exactly and we discuss this -
case shortly. In the general case, we have a computable lower bound
by the following. '

Proposition 1: 1f system (5) has a finite positive solution
{Z"(n),n > 0}, then for all N > 0, the finite system

N
Z() =B Y AVZH+C™,  0<n<N, ()

1=0
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Fig. 2. Expected length versus r, for v(b) = 0.5, pg = 0.9, p; =
0.1, and ¢ = 0.1 (lower bound for the BFO and exact value for the DFO).

has a unique sotution {Zx(n),0 < n < N} such that 0 < Zn(n) <
Z*(n) forall 0 < n < N.

Since L(n) > 0 for all n > 0, it follows by Proposition 1 that
by solving the finite system (6) for any V > 0, we obtain a lower
bound on L(n),0 < n < NV, and in particular on L*(0). This enables
us to show numerically that for certain values of the parameters,
the expected length of the two-type tree under the BFO is strictly
greater than the expected length under the DFO. An example that
demonstrates this is given in Fig. 2, where the bound for the BFO is
obtained by taking N = 2.

The Special Case po = 0:. The case pg = 0 corresponds in the
multiaccess communication system discussed in Section I, to the
likely situation where the noise can garble messages but cannot cause
the recetver to misinterpret a silence as a simultaneous transmission of
a number of transmitters. We first calculate £, (T) and then compare
between the expected lengths under the BFO and the DFO.

Proposition 2: Assume that the type of the root is 1 and that
po = 0. Then, for any order by which the vertices are selected,
we have Ep(T) < 0.

When po = 0, the first two equations of system (5) become

Z(0) = Bi[(1 - 9)K Z(0) + ¢Z(1)] + C*?,
Z(1) = B:[(1 - K*Z(0) + ¢K Z(1)] + CV).

Solving these equations, we easily obtain L°(0) (it can be shown that
these equations have a unique solution).

We now address the question which order, the DFO or the BFO,
yields a shorter expected length of the two-type tree. The complete
answer is given by the following.

Theorem 5: Assume that the type of the root is 1 and that po = 0.
Let # = r, — ry. Then, we have

q
—1<f< -2
<0< l

q’

if0<f<1 or

then EPT°(T) < EPTO(T);
q

if — 37 <f<0,  then EZTO(T) > EPFO(T);
f8=0 or 6= —rj’__q, then EPTO(T) = EPTO(T).

V. Discussion

The trees considered in this correspondence arise in multiaccess
communication, when splitting algorithms are used to access a noisy
communication channel. The expected length of these trees is direetly
related to the performance of such communication system. This

motivates the interest in comparing between the expected lengths
under the BFO and the DFO. In the special case where vertices
of type 0 do not reproduce (po = 0), the complete answer to this
question is given (Theorem 5). The importance of this result lies in
the fact that it demonstrates the property that the superiority of the
DFO over the BFO (or vice versa) depends on the type of the memory
of the environment process. Consider, for instance, the case where
g > 1/2. In this case, we obtain that the expected length is smaller
under the BFO if 7, < Tg, is smaller under the DFO if r, > r,
and is the same under both orders if r, = ry. When 7y < 1y the
process X is said to have a persistent memory, and when r, > Tq
the process is said to have an oscillatory memory (when r» = r, the
process is memoryless) [10]. Thus, the result obtained is that the BFQ
is superior (i.e., yields a shorter expected length) when the memory is
persistent, and the DFO is superior when the memory is oscillatory.

An intuitive explanation to the above phenomenon is as follows.
A process having an oscillatory memory would typically alternate
frequently between the two states b and g, whereas a process having
a persistent memory would typically stay for a long period in a state
before alternating to the other state. Suppose now that the memory
is persistent. As the state of the environment at the root of the tree is
b, subsequent states would typically be also b. Under the DFO, these
b states will typically occur at vertices of type 1, since g > 1/2 and
therefore, it is more likely that the type 1 vertex would be the right
offspring than the left offspring. On the other hand, under the BFO
some of these b states will occur at vertices of type 0 (which are
not affected by the state of the environment (po = 0)), since vertices
are selected by advancing also to the breadth of the tree. Therefore,
the expected length under the BFO is smaller. Suppose now that the
memory is oscillatory. In this case, the burst of b states is short,
and under the DFO a subsequent g state will typically terminate the
growth of the tree. On the other hand, under the BFO such g state
may be wasted on a type 0 vertex, thus deferring the termination of
the growth of the tree. Therefore, the expected length under the BFO
is greater.
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